검색결과 리스트
글
opencv 3.4.10, dnn 모듈 사용
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | #include <fstream> #include <sstream> #include <iostream> #include <string.h> #include <opencv2/dnn.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> using namespace cv; using namespace dnn; using namespace std; // Initialize the parameters float confThreshold = 0.5; // Confidence threshold float maskThreshold = 0.3; // Mask threshold vector<string> classes; vector<Scalar> colors; // Draw the predicted bounding box void drawBox(Mat& frame, int classId, float conf, Rect box, Mat& objectMask); // Postprocess the neural network's output for each frame void postprocess(Mat& frame, const vector<Mat>& outs); int main() { // Load names of classes string classesFile = "mscoco_labels.names"; ifstream ifs(classesFile.c_str()); string line; while (getline(ifs, line)) classes.push_back(line); // Load the colors string colorsFile = "colors.txt"; ifstream colorFptr(colorsFile.c_str()); while (getline(colorFptr, line)) { char* pEnd; double r, g, b; r = strtod(line.c_str(), &pEnd); g = strtod(pEnd, NULL); b = strtod(pEnd, NULL); Scalar color = Scalar(r, g, b, 255.0); colors.push_back(Scalar(r, g, b, 255.0)); } // Give the configuration and weight files for the model String textGraph = "mask_rcnn_inception_v2_coco_2018_01_28.pbtxt"; String modelWeights = "frozen_inference_graph.pb"; // Load the network Net net = readNetFromTensorflow(modelWeights, textGraph); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableTarget(DNN_TARGET_CPU); // Open a video file or an image file or a camera stream. string str, outputFile; VideoCapture cap; VideoWriter video; Mat frame, blob; outputFile = "mask_rcnn_out_cpp.avi"; // Open the webcam cap.open(0); // Get the video writer initialized to save the output video video.open(outputFile, VideoWriter::fourcc('M', 'J', 'P', 'G'), 28, Size(cap.get(CAP_PROP_FRAME_WIDTH), cap.get(CAP_PROP_FRAME_HEIGHT))); // Create a window static const string kWinName = "Deep learning object detection in OpenCV"; namedWindow(kWinName, WINDOW_NORMAL); // Process frames. while (waitKey(1) < 0) { // get frame from the video cap >> frame; // Stop the program if reached end of video if (frame.empty()) { cout << "Done processing !!!" << endl; cout << "Output file is stored as " << outputFile << endl; waitKey(3000); break; } // Create a 4D blob from a frame. blobFromImage(frame, blob, 1.0, Size(frame.cols, frame.rows), Scalar(), true, false); //blobFromImage(frame, blob); //Sets the input to the network net.setInput(blob); // Runs the forward pass to get output from the output layers std::vector<String> outNames(2); outNames[0] = "detection_out_final"; outNames[1] = "detection_masks"; vector<Mat> outs; net.forward(outs, outNames); // Extract the bounding box and mask for each of the detected objects postprocess(frame, outs); // Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes) vector<double> layersTimes; double freq = getTickFrequency() / 1000; double t = net.getPerfProfile(layersTimes) / freq; string label = format("Mask-RCNN on 2.5 GHz Intel Core i7 CPU, Inference time for a frame : %0.0f ms", t); putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0)); // Write the frame with the detection boxes Mat detectedFrame; frame.convertTo(detectedFrame, CV_8U); video.write(detectedFrame); imshow(kWinName, frame); } cap.release(); video.release(); return 0; } // For each frame, extract the bounding box and mask for each detected object void postprocess(Mat& frame, const vector<Mat>& outs) { Mat outDetections = outs[0]; Mat outMasks = outs[1]; // Output size of masks is NxCxHxW where // N - number of detected boxes // C - number of classes (excluding background) // HxW - segmentation shape const int numDetections = outDetections.size[2]; const int numClasses = outMasks.size[1]; outDetections = outDetections.reshape(1, outDetections.total() / 7); for (int i = 0; i < numDetections; ++i) { float score = outDetections.at<float>(i, 2); if (score > confThreshold) { // Extract the bounding box int classId = static_cast<int>(outDetections.at<float>(i, 1)); int left = static_cast<int>(frame.cols * outDetections.at<float>(i, 3)); int top = static_cast<int>(frame.rows * outDetections.at<float>(i, 4)); int right = static_cast<int>(frame.cols * outDetections.at<float>(i, 5)); int bottom = static_cast<int>(frame.rows * outDetections.at<float>(i, 6)); left = max(0, min(left, frame.cols - 1)); top = max(0, min(top, frame.rows - 1)); right = max(0, min(right, frame.cols - 1)); bottom = max(0, min(bottom, frame.rows - 1)); Rect box = Rect(left, top, right - left + 1, bottom - top + 1); // Extract the mask for the object Mat objectMask(outMasks.size[2], outMasks.size[3], CV_32F, outMasks.ptr<float>(i, classId)); // Draw bounding box, colorize and show the mask on the image drawBox(frame, classId, score, box, objectMask); } } } // Draw the predicted bounding box, colorize and show the mask on the image void drawBox(Mat& frame, int classId, float conf, Rect box, Mat& objectMask) { //Draw a rectangle displaying the bounding box rectangle(frame, Point(box.x, box.y), Point(box.x + box.width, box.y + box.height), Scalar(255, 178, 50), 3); //Get the label for the class name and its confidence string label = format("%.2f", conf); if (!classes.empty()) { CV_Assert(classId < (int)classes.size()); label = classes[classId] + ":" + label; } //Display the label at the top of the bounding box int baseLine; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); box.y = max(box.y, labelSize.height); rectangle(frame, Point(box.x, box.y - round(1.5*labelSize.height)), Point(box.x + round(1.5*labelSize.width), box.y + baseLine), Scalar(255, 255, 255), FILLED); putText(frame, label, Point(box.x, box.y), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 0), 1); Scalar color = colors[classId%colors.size()]; // Resize the mask, threshold, color and apply it on the image resize(objectMask, objectMask, Size(box.width, box.height)); Mat mask = (objectMask > maskThreshold); Mat coloredRoi = (0.3 * color + 0.7 * frame(box)); coloredRoi.convertTo(coloredRoi, CV_8UC3); // Draw the contours on the image vector<Mat> contours; Mat hierarchy; mask.convertTo(mask, CV_8U); findContours(mask, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); drawContours(coloredRoi, contours, -1, color, 5, LINE_8, hierarchy, 100); coloredRoi.copyTo(frame(box), mask); } | cs |
'Computer > Coding' 카테고리의 다른 글
[opencv] 하드웨어 가속 비디오 디코딩 + YOLO (2) | 2021.06.21 |
---|---|
[MFC] 폴더 선택 다이얼로그[MFC] 폴더 선택 다이얼로그 (0) | 2021.04.14 |
[opencv] C++ 이미지 파일 열기 (0) | 2021.01.04 |
char -> string 변환 (0) | 2021.01.04 |
윈도우 폴더 안의 파일 경로 가져오기 (0) | 2021.01.04 |
RECENT COMMENT