검색결과 리스트
Computer/Coding에 해당되는 글 23건
- 2017.03.30 [Processing] particle/interaction project
- 2017.03.30 [opencv] Simple lane detection
- 2017.03.30 [opencv] Line matching
글
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | import processing.video.*; int stat; int btn = 0; int btn2 = 0; int btn3 = 0; float nbsum = 0; float pbsum = 0; float nbsum2 = 0; float pbsum2 = 0; float nbsum3 = 0; float pbsum3 = 0; ParticleSystem ps; Capture video; PImage img, dback; double sum4; void setup() { size(600, 480); video = new Capture(this, 640, 480, 30); video.start(); img = createImage(640, 480, RGB); dback = createImage(640, 480, GRAY); background(0); ps = new ParticleSystem(new PVector(width/2, -1500)); } void draw() { if(video.available()){ video.read(); } video.loadPixels(); img.loadPixels(); for(int x = 50; x < 630; x++){ for(int y = 0; y < 480; y++){ img.pixels[y*img.width +(640-x)] = video.pixels[y*img.width + x]; } } img.filter(GRAY); checkInterection2(); dithering(); checkInterection(); if(btn == 1){ ps.addParticle(); ps.run(); } image(img, 0, 480); //rect(300, 0, 20, 20); } void checkInterection(){ img.loadPixels(); nbsum = 0; for(int dx = 0; dx < 20; dx++){ for(int dy = 0; dy < 20; dy++){ nbsum = nbsum + brightness(img.pixels[(dy)*img.width + (500+dx)]); } } if(abs(nbsum - pbsum) > 6000){ if(btn == 0){btn = 1;} else if(btn == 1){btn = 0;} } //text("brightness difference : " + abs(nbsum - pbsum), 10, 480); pbsum = nbsum; } void checkInterection2(){ img.loadPixels(); nbsum2 = 0; for(int dx = 0; dx < 20; dx++){ for(int dy = 0; dy < 20; dy++){ nbsum2 = nbsum2 + brightness(img.pixels[(dy)*img.width + (100+dx)]); } } if(abs(nbsum2 - pbsum2) > 10000){ if(btn2 == 0){if(btn3==1){btn2 = 2;}else{btn2 = 1;}} else if(btn2 == 1){btn2 = 2;} else if(btn2 == 2){btn2 = 3;} else if(btn2 == 3){btn2 = 4;} else if(btn2 == 4){btn2 = 0;} } //text("brightness difference : " + abs(nbsum2 - pbsum2), 10, 480); pbsum2 = nbsum2; } void backbtn(){ img.loadPixels(); nbsum3 = 0; for(int dx = 0; dx < 20; dx++){ for(int dy = 0; dy < 20; dy++){ nbsum3 = nbsum3 + brightness(img.pixels[(dy)*img.width + (500+dx)]); } } if(abs(nbsum3 - pbsum3) > 10000){ if(btn3 == 0){btn3 = 1;} else if(btn3 == 1){btn3 = 2;} else if(btn3 == 2){btn3 = 3;} else if(btn3 == 3){btn3 = 4;} else if(btn3 == 4){btn3 = 0;} } text("brightness difference : " + abs(nbsum3 - pbsum3), 10, 480); pbsum3 = nbsum3; } void dithering(){ stat = 1; img.loadPixels(); if(btn2 == 0){background(0);} else if(btn2 == 1){background(#25DBD6);} else if(btn2 == 2){background(#0130F7);} else if(btn2 == 3){background(#C03A1A);} else if(btn2 == 4){background(#8A3C86);} for(int x = 5; x < 635; x+=10){ for(int y = 5; y < 475; y+=10){ sum4 = 0; for(int a = -5; a<5; a++){ for(int b = -5; b<5; b++){ sum4 = sum4 + brightness(img.pixels[(y+b)*img.width + (x+a)]); } } if (sum4 > 25000){ ellipse(x, y, 10, 10); noStroke(); }else if ((20000<sum4)&&(sum4<25000)){ ellipse(x, y, 8, 8); noStroke(); }else if ((15000<sum4)&&(sum4<20000)){ ellipse(x, y, 6, 6); noStroke(); }else if ((10000<sum4)&&(sum4<15000)){ ellipse(x, y, 4, 4); noStroke(); }else if ((5000<sum4)&&(sum4<10000)){ ellipse(x, y, 2, 2); noStroke(); } if(btn2 == 0){ int crand = int(random(1,4)); if (crand == 1){fill(#DA2429);} else if (crand == 2){fill(#FECF08);} else if (crand == 3){fill(#3FC5E5);} else if (crand == 4){fill(#75C379);} } else if(btn2 == 1){fill(#DA2429);} else if(btn2 == 2){fill(#FECF08);} else if(btn2 == 3){fill(#3FC5E5);} else if(btn2 == 4){fill(#75C379);} } } } class ParticleSystem { ArrayList<Particle> particles; PVector origin; ParticleSystem(PVector position) { origin = position.copy(); particles = new ArrayList<Particle>(); } void addParticle() { particles.add(new Particle(origin)); } void run() { for (int i = particles.size()-1; i >= 0; i--) { Particle p = particles.get(i); p.run(); if (p.isDead()) { particles.remove(i); } } } } class Particle { PVector position; PVector velocity; PVector acceleration; float lifespan; Particle(PVector l) { acceleration = new PVector(0, 0.05); velocity = new PVector(random(-1, 1), random(-2, 0)); position = l.copy(); lifespan = 255.0; } void run() { update(); display(); } void update() { velocity.add(acceleration); position.add(velocity); lifespan -= 0.4; } void display() { //stroke(255, lifespan); noStroke(); int crand = int(random(1,4)); if (crand == 1){fill(#DA2429, lifespan);} else if (crand == 2){fill(#FECF08, lifespan);} else if (crand == 3){fill(#3FC5E5, lifespan);} else if (crand == 4){fill(#75C379, lifespan);} //fill(#854845, lifespan); //change color int rands = int(random(8,20)); ellipse(position.x, position.y, rands, rands); } boolean isDead() { if (lifespan < 0.0) { return true; } else { return false; } } } | cs |
<실행 영상>
'Computer > Coding' 카테고리의 다른 글
[Android] 반투명 액티비티 (0) | 2017.05.13 |
---|---|
[Android] 피파온라인 선수 검색 예제 (0) | 2017.04.12 |
[JSP] 테니스 토너먼트 웹 (0) | 2017.03.30 |
[opencv] Simple lane detection (0) | 2017.03.30 |
[opencv] Line matching (0) | 2017.03.30 |
설정
트랙백
댓글
글
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | #include <opencv\cv.h> #include <opencv\highgui.h> #include <iostream> #include <stdlib.h> #include <stdio.h> using namespace cv; using namespace std; Mat grad, src; Mat edges(600, 800, CV_8UC1); char name[100]; void main() { int gg = 0; while (1){ sprintf(name, "Testvideo/testvideo1/Left_%d.bmp", gg); Mat src = imread(name, 1); if (!src.data) break; // src 이미지 데이터가없으면 종료 edges = Scalar(0); //소벨 필터 Mat src_gray; Mat abs_grad_x, abs_grad_y; int scale = 1; int delta = 0; int ddepth = CV_16S; //이미지 로딩 GaussianBlur(src, src, Size(3, 3), 0, 0, BORDER_DEFAULT); cvtColor(src, src_gray, CV_RGB2GRAY); Mat grad_x, grad_y; /// Gradient X Sobel(src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT); convertScaleAbs(grad_x, abs_grad_x); /// Gradient Y Sobel(src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT); convertScaleAbs(grad_y, abs_grad_y); addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad); //오른쪽 엣지 찾기 vector<Point2i> rPoints; for (int y = 430; y < grad.rows; y = y + 5) { bool i = false; uchar* data = grad.ptr<uchar>(y); for (int x = 300; x < grad.cols; x++) { if (data[x] > 100 && i == false) { rectangle(edges, Point(x, y), Point(x - 2, y - 2), Scalar(255, 0, 0), 2); rPoints.push_back(Point(x, y)); i = true; } } } //왼쪽 엣지 찾기 vector<Point2i> lPoints; for (int y = 380; y < grad.rows; y = y + 5) { bool i = false; uchar* data = grad.ptr<uchar>(y); for (int x = 300; x > 0; x--) { if (data[x] > 100 && i == false) { rectangle(edges, Point(x, y), Point(x - 2, y - 2), Scalar(255, 0, 0), 2); lPoints.push_back(Point(x, y)); i = true; } } } // 라인 찾기 vector<Vec2f> lines; HoughLines(edges, lines, 1, CV_PI / 180, 150, 0, 0); int r, l; l = 0, r = 0; // 라인 그리기 for (size_t i = 0; i < lines.size(); i++) { float rho = lines[i][0], theta = lines[i][1]; Point pt1, pt2; double a = cos(theta), b = sin(theta); if ((a / b) < 0) { r = i; } else { l = i; cout << l << endl; } } float rho = lines[r][0], theta = lines[r][1]; Point pt1, pt2; double a = cos(theta), b = sin(theta); double x0 = a*rho, y0 = b*rho; pt1.x = cvRound(x0 + 1000 * (-b)); pt1.y = cvRound(y0 + 1000 * (a)); pt2.x = cvRound(x0 - 1000 * (-b)); pt2.y = cvRound(y0 - 1000 * (a)); float rho2 = lines[l][0], theta2 = lines[l][1]; Point pt3, pt4; double a2 = cos(theta2), b2 = sin(theta2); double x02 = a2*rho2, y02 = b2*rho2; pt3.x = cvRound(x02 + 1000 * (-b2)); pt3.y = cvRound(y02 + 1000 * (a2)); pt4.x = cvRound(x02 - 1000 * (-b2)); pt4.y = cvRound(y02 - 1000 * (a2)); double t; double s; double under = (pt4.y - pt3.y)*(pt2.x - pt1.x) - (pt4.x - pt3.x)*(pt2.y - pt1.y); double _t = (pt4.x - pt3.x)*(pt1.y - pt3.y) - (pt4.y - pt3.y)*(pt1.x - pt3.x); double _s = (pt2.x - pt1.x)*(pt1.y - pt3.y) - (pt4.y - pt1.y)*(pt1.x - pt3.x); t = _t / under; s = _s / under; double cx = pt1.x + t * (double)(pt2.x - pt1.x); double cy = pt1.y + t * (double)(pt2.y - pt1.y); Point cp; cp.x = cx, cp.y = cy; line(src, pt2, cp, Scalar(0, 0, 255), 3, CV_AA); line(src, pt3, cp, Scalar(0, 0, 255), 3, CV_AA); rectangle(src, Point(cx, cy), Point(cx - 4, cy - 4), Scalar(255, 0, 0), 4); cv::namedWindow("Detected Lines with Hough"); cv::imshow("Detected Lines with Hough", src); gg++; waitKey(1); } } | cs |
<구현 결과 영상>
<구현 과정>
'Computer > Coding' 카테고리의 다른 글
[Android] 반투명 액티비티 (0) | 2017.05.13 |
---|---|
[Android] 피파온라인 선수 검색 예제 (0) | 2017.04.12 |
[JSP] 테니스 토너먼트 웹 (0) | 2017.03.30 |
[Processing] particle/interaction project (0) | 2017.03.30 |
[opencv] Line matching (0) | 2017.03.30 |
설정
트랙백
댓글
글
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | #include <opencv2/line_descriptor.hpp> #include "opencv2/core/utility.hpp" #include <opencv2/imgproc.hpp> #include <opencv2/features2d.hpp> #include <opencv2/highgui.hpp> #include <iostream> using namespace cv; static const char* keys = { "{@image_path1 | | Image path 1 }" "{@image_path2 | | Image path 2 }" }; static void help() { std::cout << "\nThis example shows the functionalities of lines extraction " << "and descriptors computation furnished by BinaryDescriptor class\n" << "Please, run this sample using a command in the form\n" << "./example_line_descriptor_compute_descriptors <path_to_input_image 1>" << "<path_to_input_image 2>" << std::endl; } int main( int argc, char** argv ) { /* get parameters from comand line */ CommandLineParser parser( argc, argv, keys ); String image_path1 = parser.get<String>( 0 ); String image_path2 = parser.get<String>( 1 ); if( image_path1.empty() || image_path2.empty() ) { help(); return -1; } /* load image */ cv::Mat imageMat1 = imread( image_path1, 1 ); cv::Mat imageMat2 = imread( image_path2, 1 ); waitKey(); if( imageMat1.data == NULL || imageMat2.data == NULL ) { std::cout << "Error, images could not be loaded. Please, check their path" << std::endl; } /* create binary masks */ cv::Mat mask1 = Mat::ones( imageMat1.size(), CV_8UC1 ); cv::Mat mask2 = Mat::ones( imageMat2.size(), CV_8UC1 ); /* create a pointer to a BinaryDescriptor object with default parameters */ Ptr<BinaryDescriptor> bd = BinaryDescriptor::createBinaryDescriptor(); /* compute lines */ std::vector<KeyLine> keylines1, keylines2; bd->detect( imageMat1, keylines1, mask1 ); bd->detect( imageMat2, keylines2, mask2 ); /* compute descriptors */ cv::Mat descr1, descr2; bd->compute( imageMat1, keylines1, descr1 ); bd->compute( imageMat2, keylines2, descr2 ); /* create a BinaryDescriptorMatcher object */ Ptr<BinaryDescriptorMatcher> bdm = BinaryDescriptorMatcher::createBinaryDescriptorMatcher(); /* require match */ std::vector<DMatch> matches; bdm->match( descr1, descr2, matches ); /* plot matches */ cv::Mat outImg; std::vector<char> mask( matches.size(), 1 ); drawLineMatches( imageMat1, keylines1, imageMat2, keylines2, matches, outImg, Scalar::all( -1 ), Scalar::all( -1 ), mask, DrawLinesMatchesFlags::DEFAULT ); imshow( "Matches", outImg ); waitKey(); } | cs |
<출처 : http://docs.opencv.org/3.0-beta/modules/line_descriptor/doc/tutorial.html>
이미지1에서 세그먼트된 각각의 라인들에 대한 best match를 이미지2에서 한개씩 찾는다.
opencv에서는 LBD descriptor을 binary descriptor로 바꾸어 매칭을 실시한다.
이 외에 radius match나 knn match를 이용하려면 아래와 같이 수정하면 된다.
1 2 3 4 5 6 7 8 9 10 11 | /* prepare a structure to host matches */ std::vector<std::vector<DMatch> > matches; /* require knn match */ bdm->knnMatch( descr1, descr2, matches, 6 ); /* prepare a structure to host matches */ std::vector<std::vector<DMatch> > matches; /* compute matches */ bdm->radiusMatch( queries, matches, 30 ); | cs |
<출처 : http://docs.opencv.org/3.0-beta/modules/line_descriptor/doc/tutorial.html>
하지만 'matches' 벡터가 2d 벡터로 바뀌므로 image plot 부분의 코드 또한 수정이 필요하다.
1 2 3 4 5 | std::vector<char> mask( vsize, 1 ); for(int i = 0; i < matches.size(); i++){ drawLineMatches( imageMat1, keylines1, imageMat2, keylines2, matches[i], outImg, Scalar::all( -1 ), Scalar::all( -1 ), mask, DrawLinesMatchesFlags::DEFAULT ); } | cs |
위의 코드와 같이 match의 사이즈만큼 반복시켜주면 끝!
'Computer > Coding' 카테고리의 다른 글
[Android] 반투명 액티비티 (0) | 2017.05.13 |
---|---|
[Android] 피파온라인 선수 검색 예제 (0) | 2017.04.12 |
[JSP] 테니스 토너먼트 웹 (0) | 2017.03.30 |
[Processing] particle/interaction project (0) | 2017.03.30 |
[opencv] Simple lane detection (0) | 2017.03.30 |
RECENT COMMENT